点击右上角微信好友

朋友圈

请使用浏览器分享功能进行分享

正在阅读:彩虹多多官网|彩虹多多官网
首页>文化频道>要闻>正文

彩虹多多官网|彩虹多多官网

来源:彩虹多多官网2022-03-04 17:48

  

解读中央纪委全会公报:因时因势,全面从严治党“多路并进”******

  中新社北京1月11日电 题:解读中央纪委全会公报:因时因势,全面从严治党“多路并进”

  作者 张素 郭超凯 谢雁冰

  中国共产党第二十届中央纪律检查委员会第二次全体会议9日至10日在北京举行,全会研究部署2023年纪检监察工作。分析全会通过的公报,多位党建、廉政学者认为,相关工作部署因时因势,将推动全面从严治党“多路并进”。

  “二十届中央纪委二次全会公报列出八个方面部署,总体来看有两个特点。一是贯彻落实党的二十大精神,将二十大报告的多项战略部署进行细化;二是结合形势,为当前乃至今后一段时期的纪检监察工作划出重点、指明方向。”北京大学公共政策研究中心副主任庄德水对中新社记者说。

  中共二十大报告首次提出“健全全面从严治党体系”,此次公报强调“坚定不移推动健全全面从严治党体系”。中国社会科学院马克思主义研究院副院长林建华认为,这体现出“我们党成体系推进全面从严治党向纵深发展的坚定决心”。

  2023年是贯彻中共二十大精神的开局之年。全会在部署今年纪检监察工作时将“围绕落实党的二十大战略部署强化政治监督”放在首位,并要求“围绕党中央因时因势作出的决策部署加强监督检查,确保执行不偏向、不变通、不走样”。

  “由政治监督统领其他监督,体现了全面从严治党首先要从政治上看。同时,这要求纪检监察机关以更高站位履行监督职责,着力纠正政治偏差,保障党中央大政方针落地见效。”庄德水说。

  中共中央党校(国家行政学院)教授竹立家说,中共二十大报告指出“党找到了自我革命这一跳出治乱兴衰历史周期率的第二个答案”。面对新的使命任务,中共必须继续坚持自我革命的精神,继续坚持全面从严治党,为此必须推进政治监督具体化、精准化、常态化。

  学者还注意到,相比以往,此次公报中着重强调巡视。这项全面从严治党的战略性制度安排,本质也是政治监督。

  从十九届中央巡视高质量完成全覆盖任务,到构建与党的领导体制、国家治理体系相适应的巡视巡察战略格局,近年来的巡视工作稳中求进。围绕中共二十大报告提出“发挥政治巡视利剑作用”的要求,全会明确“修订巡视工作条例”“制定中央巡视工作五年规划”“扎实做好二十届中央第一轮、第二轮巡视”等举措。

  庄德水表示,这些举措意在进一步显现巡视优势,推动政治监督与其他监督融合贯通,从而为深入推进全面从严治党持续提供支撑。

  全面从严治党“多路并进”,还反映在公报释出的正风肃纪反腐新动向。

  中央八项规定已出台十年。全会提出持续深化落实中央八项规定精神、纠治“四风”,明确要“对顶风违纪行为露头就打、从严查处”,要“紧盯反复性顽固性、改头换面、隐蔽隐性问题,加大查处问责力度”。

  清华大学廉政与治理研究中心副主任宋伟表示,作风建设关乎事业成败,当前“四风”问题隐形变异、花样翻新的情况仍然存在。全会作出的部署“严”字当头、对症下药,有助于加固中央八项规定堤坝,推进作风建设常态化长效化,使党风政风和社会风气持续好转。

  反腐败斗争是全面从严治党的关键任务。为应对新形势新挑战,全会强调“坚持不敢腐、不能腐、不想腐一体推进”,要求严查重点问题、突出重点领域、紧盯重点对象。公报中,“坚决防止政商勾连、资本向政治领域渗透等破坏政治生态和经济发展环境”“把党的十八大以来不收敛不收手、胆大妄为者作为重中之重”“坚决查处新型腐败和隐性腐败”等表述受到关注。

  “全会强调要做到不敢腐、不能腐、不想腐同时发力、同向发力、综合发力,反映出党中央对于反腐败斗争的战略思考和系统部署。”宋伟说,未来对重点领域、重点行业、重点人群腐败问题整治查处,将进一步提升反腐败治理成效。

  庄德水分析说,找准腐败的突出表现、重点领域、易发环节,加强对腐败手段隐形变异、翻新升级等新特征的分析研究,还将更加有力遏制腐败增量,更加有效清除腐败存量,全面巩固发展反腐败斗争压倒性胜利。

  “新型腐败和隐性腐败的出现更要求我们因应时势、总结规律,进一步加强法规制度建设,织密纪法之网,夯实反腐倡廉基础。”竹立家说,这是全会提出“研究修订党纪处分条例,推进反腐败国家立法”等举措的应有之义。

  此外,全会着眼纪检监察机关建设,在深入推进纪检监察体制改革、锻造纪检监察干部队伍等方面作出部署,包括“一体深化推进党的纪律检查体制改革、国家监察体制改革、纪检监察机构改革”“对执纪违纪、执法违法现象零容忍”等内容。

  受访学者表示,随着全面从严治党多路并进、推向纵深,加强纪检监察机关和干部队伍自身建设更为紧迫且必要。全会对此提出更高要求,意在让这些身处全面从严治党第一线的纪检监察人员切实担起重任,开好局起好步。(完)

彩虹多多官网

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?******

  相比起今年诺贝尔生理学或医学奖、物理学奖的高冷,今年诺贝尔化学奖其实是相当接地气了。

  你或身边人正在用的某些药物,很有可能就来自他们的贡献。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  2022 年诺贝尔化学奖因「点击化学和生物正交化学」而共同授予美国化学家卡罗琳·贝尔托西、丹麦化学家莫滕·梅尔达、美国化学家巴里·夏普莱斯(第5位两次获得诺贝尔奖的科学家)。

  一、夏普莱斯:两次获得诺贝尔化学奖

  2001年,巴里·夏普莱斯因为「手性催化氧化反应[1] [2] [3]」获得诺贝尔化学奖,对药物合成(以及香料等领域)做出了巨大贡献。

  今年,他第二次获奖的「点击化学」,同样与药物合成有关。

  1998年,已经是手性催化领军人物的夏普莱斯,发现了传统生物药物合成的一个弊端。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  过去200年,人们主要在自然界植物、动物,以及微生物中能寻找能发挥药物作用的成分,然后尽可能地人工构建相同分子,以用作药物。

  虽然相关药物的工业化,让现代医学取得了巨大的成功。然而随着所需分子越来越复杂,人工构建的难度也在指数级地上升。

  虽然有的化学家,的确能够在实验室构造出令人惊叹的分子,但要实现工业化几乎不可能。

  有机催化是一个复杂的过程,涉及到诸多的步骤。

  任何一个步骤都可能产生或多或少的副产品。在实验过程中,必须不断耗费成本去去除这些副产品。

  不仅成本高,这还是一个极其费时的过程,甚至最后可能还得不到理想的产物。

  为了解决这些问题,夏普莱斯凭借过人智慧,提出了「点击化学(Click chemistry)」的概念[4]。

  点击化学的确定也并非一蹴而就的,经过三年的沉淀,到了2001年,获得诺奖的这一年,夏普莱斯团队才完善了「点击化学」。

  点击化学又被称为“链接化学”,实质上是通过链接各种小分子,来合成复杂的大分子。

  夏普莱斯之所以有这样的构想,其实也是来自大自然的启发。

  大自然就像一个有着神奇能力的化学家,它通过少数的单体小构件,合成丰富多样的复杂化合物。

  大自然创造分子的多样性是远远超过人类的,她总是会用一些精巧的催化剂,利用复杂的反应完成合成过程,人类的技术比起来,实在是太粗糙简单了。

  大自然的一些催化过程,人类几乎是不可能完成的。

  一些药物研发,到了最后却破产了,恰恰是卡在了大自然设下的巨大陷阱中。

   夏普莱斯不禁在想,既然大自然创造的难度,人类无法逾越,为什么不还给大自然,我们跳过这个步骤呢?

  大自然有的是不需要从头构建C-C键,以及不需要重组起始材料和中间体。

  在对大型化合物做加法时,这些C-C键的构建可能十分困难。但直接用大自然现有的,找到一个办法把它们拼接起来,同样可以构建复杂的化合物。

  其实这种方法,就像搭积木或搭乐高一样,先组装好固定的模块(甚至点击化学可能不需要自己组装模块,直接用大自然现成的),然后再想一个方法把模块拼接起来。

  诺贝尔平台给三位化学家的配图,可谓是形象生动[5] [6]:

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  夏普莱斯从碳-杂原子键上获得启发,构想出了碳-杂原子键(C-X-C)为基础的合成方法。

  他的最终目标,是开发一套能不断扩展的模块,这些模块具有高选择性,在小型和大型应用中都能稳定可靠地工作。

  「点击化学」的工作,建立在严格的实验标准上:

  反应必须是模块化,应用范围广泛

  具有非常高的产量

  仅生成无害的副产品

  反应有很强的立体选择性

  反应条件简单(理想情况下,应该对氧气和水不敏感)

  原料和试剂易于获得

  不使用溶剂或在良性溶剂中进行(最好是水),且容易移除

  可简单分离,或者使用结晶或蒸馏等非色谱方法,且产物在生理条件下稳定

  反应需高热力学驱动力(>84kJ/mol)

  符合原子经济

  夏尔普莱斯总结归纳了大量碳-杂原子,并在2002年的一篇论文[7]中指出,叠氮化物和炔烃之间的铜催化反应是能在水中进行的可靠反应,化学家可以利用这个反应,轻松地连接不同的分子。

  他认为这个反应的潜力是巨大的,可在医药领域发挥巨大作用。

  二、梅尔达尔:筛选可用药物

  夏尔普莱斯的直觉是多么地敏锐,在他发表这篇论文的这一年,另外一位化学家在这方面有了关键性的发现。

  他就是莫滕·梅尔达尔。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  梅尔达尔在叠氮化物和炔烃反应的研究发现之前,其实与“点击化学”并没有直接的联系。他反而是一个在“传统”药物研发上,走得很深的一位科学家。

  为了寻找潜在药物及相关方法,他构建了巨大的分子库,囊括了数十万种不同的化合物。

  他日积月累地不断筛选,意图筛选出可用的药物。

  在一次利用铜离子催化炔与酰基卤化物反应时,发生了意外,炔与酰基卤化物分子的错误端(叠氮)发生了反应,成了一个环状结构——三唑。

  三唑是各类药品、染料,以及农业化学品关键成分的化学构件。过去的研发,生产三唑的过程中,总是会产生大量的副产品。而这个意外过程,在铜离子的控制下,竟然没有副产品产生。

  2002年,梅尔达尔发表了相关论文。

  夏尔普莱斯和梅尔达尔也正式在“点击化学”领域交汇,并促使铜催化的叠氮-炔基Husigen环加成反应(Copper-Catalyzed Azide–Alkyne Cycloaddition),成为了医药生物领域应用最为广泛的点击化学反应。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  三、贝尔托齐西:把点击化学运用在人体内

  不过,把点击化学进一步升华的却是美国科学家——卡罗琳·贝尔托西。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  虽然诺奖三人平分,但不难发现,卡罗琳·贝尔托西排在首位,在“点击化学”构图中,她也在C位。

  诺贝尔化学奖颁奖时,也提到,她把点击化学带到了一个新的维度。

  她解决了一个十分关键的问题,把“点击化学”运用到人体之内,这个运用也完全超出创始人夏尔普莱斯意料之外的。

  这便是所谓的生物正交反应,即活细胞化学修饰,在生物体内不干扰自身生化反应而进行的化学反应。

  卡罗琳·贝尔托西打开生物正交反应这扇大门,其实最开始也和“点击化学”无关。

  20世纪90年代,随着分子生物学的爆发式发展,基因和蛋白质地图的绘制正在全球范围内如火如荼地进行。

  然而位于蛋白质和细胞表面,发挥着重要作用的聚糖,在当时却没有工具用来分析。

  当时,卡罗琳·贝尔托西意图绘制一种能将免疫细胞吸引到淋巴结的聚糖图谱,但仅仅为了掌握多聚糖的功能就用了整整四年的时间。

  后来,受到一位德国科学家的启发,她打算在聚糖上面添加可识别的化学手柄来识别它们的结构。

  由于要在人体中反应且不影响人体,所以这种手柄必须对所有的东西都不敏感,不与细胞内的任何其他物质发生反应。

  经过翻阅大量文献,卡罗琳·贝尔托西最终找到了最佳的化学手柄。

  巧合是,这个最佳化学手柄,正是一种叠氮化物,点击化学的灵魂。通过叠氮化物把荧光物质与细胞聚糖结合起来,便可以很好地分析聚糖的结构。

  虽然贝尔托西的研究成果已经是划时代的,但她依旧不满意,因为叠氮化物的反应速度很不够理想。

  就在这时,她注意到了巴里·夏普莱斯和莫滕·梅尔达尔的点击化学反应。

  她发现铜离子可以加快荧光物质的结合速度,但铜离子对生物体却有很大毒性,她必须想到一个没有铜离子参与,还能加快反应速度的方式。

  大量翻阅文献后,贝尔托西惊讶地发现,早在1961年,就有研究发现当炔被强迫形成一个环状化学结构后,与叠氮化物便会以爆炸式地进行反应。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  2004年,她正式确立无铜点击化学反应(又被称为应变促进叠氮-炔化物环加成),由此成为点击化学的重大里程碑事件。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  贝尔托西不仅绘制了相应的细胞聚糖图谱,更是运用到了肿瘤领域。

  在肿瘤的表面会形成聚糖,从而可以保护肿瘤不受免疫系统的伤害。贝尔托西团队利用生物正交反应,发明了一种专门针对肿瘤聚糖的药物。这种药物进入人体后,会靶向破坏肿瘤聚糖,从而激活人体免疫保护。

  目前该药物正在晚期癌症病人身上进行临床试验。

  不难发现,虽然「点击化学」和「生物正交化学」的翻译,看起来很晦涩难懂,但其实背后是很朴素的原理。一个是如同卡扣般的拼接,一个是可以直接在人体内的运用。

「  点击化学」和「生物正交化学」都还是一个很年轻的领域,或许对人类未来还有更加深远的影响。(宋云江)

  参考

  https://www.nobelprize.org/prizes/chemistry/2001/press-release/

  Pfenninger, A. Asymmetric Epoxidation of Allylic Alcohols: The Sharpless Epoxidation[J]. Synthesis, 1986, 1986(02):89-116.

  Rao A S . Addition Reactions with Formation of Carbon–Oxygen Bonds: (i) General Methods of Epoxidation - ScienceDirect[J]. Comprehensive Organic Synthesis, 1991, 7:357-387.

  Kolb HC, Finn MG, Sharpless KB. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew Chem Int Ed Engl. 2001 Jun 1;40(11):2004-2021.

  https://www.nobelprize.org/uploads/2022/10/popular-chemistryprize2022.pdf

  https://www.nobelprize.org/uploads/2022/10/advanced-chemistryprize2022.pdf

  Demko ZP, Sharpless KB. A click chemistry approach to tetrazoles by Huisgen 1,3-dipolar cycloaddition: synthesis of 5-acyltetrazoles from azides and acyl cyanides. Angew Chem Int Ed Engl. 2002 Jun 17;41(12):2113-6. PMID: 19746613.

  (文图:赵筱尘 巫邓炎)

[责编:天天中]
阅读剩余全文(

相关阅读

视觉焦点

  • 刘强东退出章泽天"处女投"公司

  • 三星Galaxy Fold拆解:柔性屏内部啥样

独家策划

推荐阅读
彩虹多多官网央行4月29日不开展公开市场操作
2024-04-19
彩虹多多官网北京大兴国际机场内装进入尾声
2025-01-04
彩虹多多官网从六方面看决定持股过节
2025-01-09
彩虹多多官网美国大选还没开始,特朗普就给他的对手都取好了外号
2024-06-20
彩虹多多官网自称“大学生”兼职招嫖,这款热门交友软件下架整改
2025-01-11
彩虹多多官网热血传奇18周年专区礼包
2024-08-30
彩虹多多官网巴基斯坦海军参谋长连访上海武汉两造船厂
2024-09-28
彩虹多多官网 河南遇强降雨 9.8万人转移
2024-10-27
彩虹多多官网 四川证监局:科创板上市不要盲目跟风 更不能搞欺诈发行
2024-03-09
彩虹多多官网郭台铭再谈台防务靠和平:为何要中国人打中国人?
2024-08-22
彩虹多多官网秦岭别墅拆除后支脉骊山又被曝现别墅群 官方回应
2025-01-10
彩虹多多官网长期有症状小心脑溢血
2025-01-05
彩虹多多官网VIP4.3不怕贼惦记吴刚张馨予大漠夺金矿嘉宾:吴刚 张馨予 应采儿
2024-09-20
彩虹多多官网《纽约时报》刊登种族歧视漫画 道歉难平众怒(图)
2024-12-30
彩虹多多官网 6招轻松实践2019最佳饮食模式
2024-09-29
彩虹多多官网星座靠谱儿:12星座吃醋反应
2024-02-17
彩虹多多官网 花费1000元买一把键盘是什么心理?
2024-09-06
彩虹多多官网5.99万起试驾比亚迪最便宜电动车
2024-04-04
彩虹多多官网一季度投资消费出口抢眼 外贸确保进出口稳中提质
2024-08-29
彩虹多多官网中安时评:冬奥,闪耀不一般的中国自信
2024-11-18
彩虹多多官网吴奇隆当爸微博报喜:母子平安
2024-12-22
彩虹多多官网机器人进入手术室,悬壶济世的时代来临?
2025-01-03
彩虹多多官网警犬追捕嫌犯误撞豪猪 脸上被扎200根刺
2024-08-14
彩虹多多官网替嫁娇妻:偏执总裁宠上瘾
2024-09-20
加载更多
彩虹多多官网地图

分享一下官方科普攻略给大家盘点一下让我来给大家科普我来科普一下官方推荐科普推荐资讯热点玩家必看科普